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Abstract: In wearable or implantable biomedical devices that typically rely on battery power for
diagnostics or operation, the development of flexible piezoelectric nanogenerators (NGs) that enable
mechanical-to-electrical energy harvesting is finding promising applications. Here, we present the
construction of a flexible piezoelectric nanogenerator using a thin film of room temperature deposited
nanocrystalline aluminium nitride (AlN). On a thin layer of aluminium (Al), the AlN thin film was
grown using pulsed laser deposition (PLD). The room temperature grown AlN film was composed of
crystalline columnar grains oriented in the (100)-direction, as revealed in images from transmission
electron microscopy (TEM) and X-ray diffraction (XRD). Fundamental characterization of the AlN
thin film by piezoresponse force microscopy (PFM) indicated that its electro-mechanical energy
conversion metrics were comparable to those of c-axis oriented AlN and zinc oxide (ZnO) thin films.
Additionally, the AlN-based flexible piezoelectric NG was encapsulated in polyimide to further
strengthen its mechanical robustness and protect it from some corrosive chemicals.

Keywords: piezoelectric nanogenerator; aluminum nitride; energy harvesting; pulsed laser deposi-
tion; piezoelectricity; piezoresponse force microscopy; wearable device

1. Introduction

Flexible thin film-based NGs have been demonstrated to have a positive impact on
energy harvesting applications, particularly due to their ability to scavenge biomechanical
energy from the human body. They are capable of converting very small amounts of in vivo
biomechanical energy from a variety of sources, such as diaphragm movement, muscle
relaxation and contraction, heartbeat, and blood flow [1–9]. Tactile sensors, pacemak-
ers, artificial skin, heart rate monitors, neural stimulators, and implantable cardioverter-
defibrillators are examples of bioelectronic devices that employ NGs to offer continuous
diagnosis and therapy [10–17].

Lead zirconate titanate (PZT) and ZnO are currently the two inorganic piezoelectric
materials for NG fabrication that have attracted the most attention. On the one hand, due
to its high piezoelectric coefficient, PZT has long been the preferred piezoelectric material
for mechanical energy harvesting [18–22]. It has been extensively utilized in precision
motion systems [23–25] and microrobotic systems [26–28]. PZT typically needs to be baked
and annealed at high temperatures (such as above 600 ◦C), and the presence of lead raises
concerns about its long-term in vivo operation, possibly preventing its use in a variety of
wearable or biocompatible technologies [29]. On the other hand, ZnO has emerged as a
well-researched and widely-used inorganic piezoelectric material for wearable NGs due to
its biocompatibility to some extent [29–35]. In contrast to inorganic ferroelectric materials,
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ZnO does not require additional electric–thermal poling and could be regarded as a more
environmentally friendly piezoelectric material than PZT [36,37].

AlN is a piezoelectric material that is compatible with CMOS and MEMS. Typically,
magnetron sputtering is used to deposit (002)-oriented AlN thin films [38,39]. As a different
inorganic piezoelectric material, AlN has not been investigated as much as PZT and ZnO
in wearable bioimplants. AlN can be grown as thin films and has the same merits as ZnO
that were previously mentioned. Moreover, whereas Zn is a fast diffusing ion and may be
problematic during the integration of ZnO films in monolithically integrated devices [40,41],
AlN is more stable and is compatible with standard silicon technologies [42]. AlN is also
biocompatible and features lower mass density, higher electrical resistivity, wider band gap,
and resistance to harsh environments [43–48]. However, the high temperatures typically
required to deposit highly oriented AlN thin films in the c-axis may limit their use in flexible
electronics. The research reported here shows the development and characterization of
a flexible and biocompatible NG based on (100)-oriented nanocrystalline AlN thin film
deposited at room temperature using the PLD technique. As polymers are frequently
employed as substrates, building blocks, protective layers, etc. for flexible electronics,
the room temperature deposition environment might make it possible to develop AlN-
based flexible electronics using a variety of polymers that typically cannot withstand high
temperatures.

2. Experimental Section and Discussion
2.1. Fabrication of Flexible AlN Piezoelectric Nanogenerators

The fabrication procedure of the proposed flexible AlN piezoelectric nanogenerator
(AlN-PNG) is shown in Figure 1. Initially, a 100-nm-thick polymethyl methacrylate (PMMA;
200336, Sigma-Aldrich, St. Louis, MO, USA) layer was spin-coated onto a 2-inch single-side
polished silicon wafer at a speed of 3000 rpm for 1 min. After 30 min, a polyimide (PI,
PI-2525, HD MicroSystem, Parlin, NJ, USA) layer with a thickness of around 13 µm was
spun at a speed of 1500 rpm for 1 min. Once PI was cured at a temperature of 200 ◦C for
120 min, a thin layer of Al with a thickness of around 120 nm was evaporated using a
shadow mask to define the pattern of the bottom electrode. Al was evaporated in a vacuum
chamber (base pressure of 7 mTorr). Next, PLD was used to deposit an 800 nm AlN thin
film in a different vacuum chamber (Figure 2). The vacuum chamber was continuously
evacuated to a base pressure of less than 8 × 10−6 Torr. A stoichiometric hot compressed
AlN target (99.8% pure, Kurt J. Lesker, Jefferson Hills, PA, USA) was ablated using a pulsed
KrF excimer laser (LPX 200, Lambda Physik, Göttingen, Germany) at a wavelength of
248 nm while it was being rotated by an external motor during the PLD process. The
laser’s output energy and its repetition rate were set to 300 mJ and 10 Hz, respectively.
An embedded thermocouple in the substrate holder was used to monitor the sample’s
temperature. The substrate, which was mounted 4 cm away, received the ablated plume
that had been ejected onto it at a 45◦ angle when the AlN target was struck by a high
energy pulsed laser beam. Using a different shadow mask than the one used for the first Al
layer, another layer of Al thin film measuring approximately 120 nm was evaporated on
top of the AlN thin film. The top and bottom electrodes, which were deposited using two
separate Al evaporation procedures, were then electrically isolated and partially exposed.
Then, a portion of each Al electrode was covered with polytetrafluoroethylene (PTFE) tape.
The second layer of PI (13 µm) was spun at 1500 rpm for one minute after the electrode
connections had been covered. After spinning, the PTFE tapes were peeled off, exposing
the contact pads at the device’s bottom and top electrodes. Afterward, the PI was cured at
200 ◦C. The final step of the fabrication procedure was to submerge the wafer in acetone
for two hours to dissolve the PMMA layer underneath; this process will separate the thin
film device from the wafer so that it can be retrieved eventually.
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Figure 1. Fabrication procedure of the developed AlN-PNG. 

 
Figure 2. (a) Schematic illustration and (b) photography of the growth process of AlN thin film by 
PLD. 

Figure 3a displays a schematic illustration of the fabricated AlN-PNG in exploded 
view. The thin AlN film that PLD deposited at room temperature separated the top and 
bottom Al layers that served as electrodes. AlN has a high electric resistance (1011–1013 
Ω·cm) and a wide band gap (6.2 ± 0.1 eV) [49]. Previous studies had employed one or more 
AlN interlayers to build high potential barriers and prevent short circuits between ZnO 
nanowires (NWs) and the device’s upper electrode [36]. Therefore, compared with other 
inorganic thin film-based NGs, the developed device did not require an extra insulating 
layer between the electrodes and the piezoelectric layers. A high potential barrier was 
provided by the high resistivity of the AlN for preventing undesired current leakage 
across the electrodes. In order to reduce the risk of performance failure or an immune 
response, two PI films served as the protective layers that encapsulated the device and 
made it potentially suitable for implantable biomedical applications [50]. The PI films aim 
to increase the device’s mechanical robustness without compromising its flexibility and 
also isolate it from bodily fluids and tissue. An optical image of the bent AlN-PNG at-
tached to a glass tube is shown in Figure 3b, demonstrating its thin film properties and 
flexibility. It is worth mentioning that, other than PI, additional materials can also be used 
as the protective layers. For example, hydrogel have been proven recently as a good can-
didate to serve as both a flexible matrix and conductive building blocks [51–53]. 
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Figure 2. (a) Schematic illustration and (b) photography of the growth process of AlN thin film by PLD.

Figure 3a displays a schematic illustration of the fabricated AlN-PNG in exploded view.
The thin AlN film that PLD deposited at room temperature separated the top and bottom
Al layers that served as electrodes. AlN has a high electric resistance (1011–1013 Ω·cm)
and a wide band gap (6.2 ± 0.1 eV) [49]. Previous studies had employed one or more
AlN interlayers to build high potential barriers and prevent short circuits between ZnO
nanowires (NWs) and the device’s upper electrode [36]. Therefore, compared with other
inorganic thin film-based NGs, the developed device did not require an extra insulating
layer between the electrodes and the piezoelectric layers. A high potential barrier was
provided by the high resistivity of the AlN for preventing undesired current leakage
across the electrodes. In order to reduce the risk of performance failure or an immune
response, two PI films served as the protective layers that encapsulated the device and
made it potentially suitable for implantable biomedical applications [50]. The PI films aim
to increase the device’s mechanical robustness without compromising its flexibility and
also isolate it from bodily fluids and tissue. An optical image of the bent AlN-PNG attached
to a glass tube is shown in Figure 3b, demonstrating its thin film properties and flexibility.
It is worth mentioning that, other than PI, additional materials can also be used as the
protective layers. For example, hydrogel have been proven recently as a good candidate to
serve as both a flexible matrix and conductive building blocks [51–53].
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Figure 3. (a) Schematic illustration of AlN-PNG and (b) optical image of a bent AlN-PNG attached to
a glass tube.

2.2. Characterization of AlN Thin Film

Using a field-emission scanning electron microscope (FE-SEM, Carl Zeiss AURIGA,
Oberkochen, Germany), a cross-sectional image of the AlN that was deposited by PLD at
room temperature and covered with thermally evaporated Al as the electrode was obtained.
As can be seen in Figure 4a, the thicknesses of AlN and Al thin films are around 800 nm
and 120 nm, respectively. An analysis using TEM (JEOL 2200FS, Tokyo, Japan) was done
to observe the AlN crystallographic properties. A TEM image of an around 80-nm-thick
AlN film deposited on the TEM grid under the same conditions as AlN-PNG is shown in
Figure 4b. In the TEM image, columnar nanocrystalline AlN with a parallel orientation
with respect to the substrate is visible. By using an XRD (D5000, Siemens, Berlin, Germany)
2θ scan with Cu Kα1 radiation, the crystal structure and crystallinity of the AlN thin film
were further characterized. There were no other peaks visible besides the diffraction peak
shown in Figure 5 at the angle corresponding to the AlN (100) plane.
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2.3. Piezoresponse Force Microscopy of AlN Thin Film

In order to characterize the piezoelectric property of AlN-PNG, we used a PFM
instrument (NanoMan AFM, Bruker, Santa Barbara, CA, USA) to measure the effective
longitudinal piezoelectric constant d33 of the AlN thin film. The PFM technique is a useful
method for examining ferroelectric and piezoelectric phenomena [54,55]. The experimental
strategy is based on the detection of local sample vibrations caused by an AC signal
applied between the conductive tip and the bottom electrode of the sample. The schematic
illustration and the photography of the PFM measurement setup are shown in Figure 6a,b,
respectively. A layer of Al film was initially deposited on a silicon substrate by evaporation
for sample preparation. Then, by means of PLD, an AlN film was deposited onto the Al
film. Both the Al film and the AlN film are deposited under the same AlN-PNG fabrication
process. The sample was mounted on an electrically conductive puck, and the Al film and
puck were electrically connected by applying silver paint, as shown in Figure 6c. In this
case, an AlN film of the sample was in contact with a platinum–iridium coated conductive
tip (radius of 25 nm, Bruker CONTV-PT, Santa Barbara, CA, USA), and an AC bias voltage
was applied to the conductive puck to produce mechanical vibrations. The relationship
between applied voltage and displacement was extracted from these vibrations through
the demodulation process known as lock-in. The magnitude of the AC bias voltage applied
to the PFM tip ranged from 0 to 10 V. The frequency was set at 2 kHz to prevent mechanical
oscillation of the tip at its resonant frequency (13 kHz).
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amplitude and modulating AC bias voltage amplitude obtained from the PFM measurement.

It is worth noting that the electrostatic forces and the electromechanical response of
the surface may have an impact on the measured signal. Because of this, the measured
displacement was not solely a result of the piezoelectric response. Here, we also measured
a bare silicon sample as a benchmark in order to eliminate additional displacement sources
and isolate the piezoelectric behavior of AlN thin film. The measured amplitude was taken
into consideration as the background response because silicon does not exhibit the inverse
piezoelectric effect. Figure 6d shows the relationship between piezoresponse amplitude and
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modulating AC bias voltage amplitude obtained from the PFM measurement. The effect of
the background must be taken into consideration when determining the real relationship
between the piezoresponse amplitude and the modulation voltage amplitude. The substrate
and AlN film were tightly clamped together in the tested structure, which constrained the
film’s in-plane contraction and expansion. This type of structure’s measured piezoelectric
coefficient can be regarded as an effective piezoelectric coefficient de f f

33 . The calculated
effective piezoelectric coefficient for the PLD deposited AlN thin film is 5.9 pm/V. Through
the mechanical compliance of the piezoelectric film (S11, S12, and S13) and the transverse
piezoelectric coefficient d31, it has been derived that de f f

33 is related to the piezoelectric
coefficient d33 in the following manner [56]:

de f f
33

∼= d33 −
2S13

S11 + S12
d31 (1)

where the elastic compliance values of AlN, S11, S12, and S13 are taken from Wright [57]
as 3 × 10−12 m2/N, 8 × 10−12 m2/N, and 8 × 10−12 m2/N, respectively; and d31 can
be estimated as de f f

33 /2 [58]. Using Equation (1), the unclamped value d33 of the (100)-
oriented AlN thin film used for the reported NG device was calculated to be 10.2 pm/V.
The measured values of the effective piezoelectric coefficient d33 of thin films made of AlN
and ZnO are shown in Table 1. As can be seen, the (100)-oriented AlN thin film in this study,
which was deposited by PLD at room temperature, had a d33 piezoelectric constant that
was on par with findings for (002)-oriented AlN thin films [58–61] and was also comparable
to that of (002)-oriented ZnO thin films [62–64].

Table 1. Measured effective piezoelectric coefficient de f f
33 of AlN and ZnO thin films.

Material deff
33 (pm/V) Literature

AlN (002)

4.15 Tonisch et al. [58]
6.8 Reusch et al. [59]

2.8–5.2 Martin et al. [60]
4.6–5.2 Mortet et al. [61]

ZnO (002)
8.14 Li et al. [62]
13 Christman et al. [63]
5.9 Safari et al. [64]

AlN (100)
2.3–3.8 Cibert et al. [65]

5.9 This work

2.4. Energy Conversion of AlN-PNG

We measured the open-circuit voltage while the AlN-PNG was being repeatedly sub-
jected to strain inputs in order to validate its performance. This approach has frequently
been used to test NGs [3,6,7,66]. A low-noise nanovoltmeter (Keithley 2182A, Cleveland,
OH, USA) was used to measure the open-circuit voltage produced by AlN-PNG. By em-
ploying a linear motion stage, the AlN-PNG was repeatedly deformed and then restored
during the measurement in a cyclic stretching–releasing agitation at a frequency of 0.35 Hz,
as depicted in Figure 7a,b, respectively. Switching polarity tests were also conducted, as can
be seen in Figure 7c,d, to confirm that the measured signals were not artifacts brought on
by the measurement equipment and that the measured output voltage was the result of the
piezoelectric effect of the AlN thin film. In Figure 7e,f, the open-circuit voltages obtained
from AlN-PNG when they were bent and then released at regular intervals are shown. It
is evident that during the continuous cycle of bending and releasing motions, a number
of positive and negative pulses were produced. As can be seen, the developed AlN-PNG
can generate an open-circuit peak-to-peak voltage of approximately 10 mV. Repeating the
experiments three months later allowed for a durability test, and the results demonstrated
that the AlN-PNG can still produce the same amount of voltage as when it was initially
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fabricated. Since the developed device falls under the category of a piezoelectric nanogen-
erator, it is expected that either increasing the device’s surface area or stacking AlN thin
films to create a multi-layer structure will effectively enhance the device’s performance.
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piezoelectric response, with a piezoelectric coefficient comparable to that of ZnO and c-
axis AlN. Based on the grown AlN thin film, an encapsulated thin film nanogenerator 
AlN-PNG has been developed. Periodic bending and releasing motion experiments 
proved the electrical output of the developed AlN-PNG. This work may provide a way 
towards fabricating inorganic and thin-film structured self-powered electronics and 
biomedical devices at room temperature. 
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Figure 7. Photographs of AlN-PNG in its (a) original state and (b) bent state by the linear motion stage;
schematic illustration of the open-circuit voltage measurement in (c) forward and (d) reverse connections;
generated voltage from AlN-PNG under periodic bending in (e) forward and (f) reverse connections.

3. Conclusions

In this work, we have developed a lightweight, flexible, and biocompatible NG based
on AlN thin film. The growth of (100)-oriented AlN thin films in a vacuum (i.e., without
any background gas) at room temperature was accomplished through the PLD. The XRD
measurement revealed the (100)-orientation of the grown AlN thin film. Additionally, PFM
testing demonstrated that the thin film of (100)-oriented AlN exhibits a strong piezoelectric
response, with a piezoelectric coefficient comparable to that of ZnO and c-axis AlN. Based
on the grown AlN thin film, an encapsulated thin film nanogenerator AlN-PNG has been
developed. Periodic bending and releasing motion experiments proved the electrical
output of the developed AlN-PNG. This work may provide a way towards fabricating
inorganic and thin-film structured self-powered electronics and biomedical devices at room
temperature.
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